Vestiges of Discomposition and other works by Simon Whetham

loudspeaker earth water Simon Whetham
Loudspeaker covered with earth during Simon Whetham’s performance Vestiges of Discomposition. © Simon Whetham

Before Simon Whetham starts his performance, he asks you to close your eyes. However, I could not withstand to open my eyes briefly once in a while. I saw Simon walking around slowly, holding a cymbal in his hands. A tactile transducer was attached to the cymbal (Simon uses Dayton transducers, often also called exciters. If you want to know more, about what kind of microphones and loudspeakers he is using, have a look at the very detailed equipment list on his website). Larger sounds were diffused by a tactile transducer attached to the big metal ventilation system on the ceiling, resonating in different ways depending on the frequencies diffused by the tactile transducer.

tactile transducer ventilation system
The tactile transducer attached to the ventilation system. © Simon Whetham
Simon Whetham object tactile transducer
Simon Whetham is carrying an object with a tactile transducer attached to it through the audience. © Simon Whetham.

Every performance space is different of course, as are the objects you might find in such a space, so I asked Simon how he prepares for these performances. He answered me, that besides being experienced enough now to often know already what object might sound good, “banging and knocking on objects to test their resonance and which part is more resonant is essential. Also when setting up I will place objects in various parts of the room to test how each one works in the space, for distance and if they will even vibrate against another resonant object. But then this can change during the performance as I often have no control over where people sit!” And some of his favourite objects, such as the cymbal, just travel with him.

cymbal tactile transducer Simon Whetham
Simon Whetham holding a cymbal with a tactile transducer attached to it during the blurred edges festival 2016. © Simon Whetham.

As an input Simon uses pre-recorded sounds and recordings made in the performance space itself, but also produces many sounds live. For creating live sounds he often uses a small loudspeaker cone,“I also started working with an open speaker as a sound source, either by playing audible sounds through it and then channeling them around the room, or using inaudible low frequency recordings and placing objects inside the speaker. I like this approach as field recorded low frequencies are often unpredictable in their volume level, creating an erratic ‘rhythm’ with the objects in the speaker or even throwing them out.”

aluminium foil loudspeaker Simon Whetham
A loudspeaker cone prepared with broken glass. © Simon Whetham. Picture by Michel Pennec of humus in Lausanne.

As a result of sending the same recorded sound to the differently prepared loudspeakers in space, there are now several representations in the room: one is the sound of the loudspeaker cone covered with, for example, broken glass or stones, the other ones are very similar sounds somewhere else in the space, but filtered by the spectral characteristics of this object. You hear beautiful reminiscences of sounds of scraping stones, scratching metal, or the electric noise made by a ventilation system. But all of them are surrounded by a sonic aura, which makes them less recognisable, transforming them into more imaginary sounds, not related to any existing things. Listening to a recording can of course never reproduce such a performance, but it might give you at least an impression of what kinds of sounds were used:

In contrast, in Everyday Emanations (Dead End) (2017) the sound source is more easily recognisable and plenty of visual cues reveal the source of the sound. Once again, Simon uses tactile transducers, this time attached to damaged car parts. He recorded sounds of traffic inside objects such as pipes, bottles and cans in the streets of Nakanojo (Japan) and these are played through the tactile transducers. Or in Simon’s words: “So ‘dead’ cars would play the sounds of ‘live’ ones.” This time your eyes should not be shut, since car lamps are used to light the space, turning on and off according to the volume of the sound.

An even more direct examination of the physicality of sounds occurs when Simon uses loudspeakers for creating physical marks. The visuality of the performance—completely absent during the first performance I discussed—plays a crucial role now. Simon mentions the book Lines: A Brief History by Tim Ingold to explain more about these works: “Ingold describes two classifications of lines – threads and traces. I was led to consider traces of sound, or of action that makes sound. This ranged from retracing grooves cut into metal objects by the process of twine production, to actually creating physical traces of sounds, to be displayed as visual representations.” In Trace of Water (2016) several metal wires are attached to a very small loudspeaker. A recording of cascading stream water in Wongol (South Korea) is carrying the loudspeaker through the sand, literally leaving its traces in the sand:

Another work using also the sounds of cascades is the very poetic Vestiges of Discomposition (2016), developed on Mount Tsukuba in Japan. Simon used hydrophones to supply a live sound feed, “carefully positioning it to pick up the most energy from the flow. When transduced to sound through a speaker, this energy manifests itself as a low frequency that is unheard by human ears, but creates a strong movement in the speaker itself.” He now fills the different loudspeakers with earth and water, recreating the landscape the loudspeakers are placed in. “These ‘landforms’ mark every point where the stream makes more audible sound above the water, therefore acting as listening stations.”

In Trace of the Storm (2017), created of the Open Arts Project in Busan (South Korea) a recording of a storm is played through two loudspeakers. One of them is a loudspeaker attached to the wood of a painting, the other one is a speaker cone filled with Korean ink, and producing a similar painting as the first one. “The sound continues to play through both pieces, but is heard in two different ways. The picture filters out low frequencies so you hear more detail, whereas the open speaker is almost inaudible, but creates another ‘drawing’.” This results in what could be called an action painting by a loudspeaker. In Simon Whetham’s works the microphones and loudspeakers are not only transducing between air and electricity, but they translate between all kinds of movements and sounds.

The trace of the storm by Simon Whetham
The trace of the storm by Simon Whetham: one finished painting and one in the process of making. © Simon Whetham.

Touche Nature by I-lly Cheng

We Spoke plays Touche Nature by I-lly Cheng
We Spoke plays Touche Nature by I-lly Cheng. © I-lly Cheng.

Vibrations of loudspeaker membranes cause air pressure waves, which our hearing system perceive as sound. As long as they are travelling through the air, these sound waves stay invisible to human beings. But as Ernst Chladni described in his book Entdeckungen über die Theorie des Klanges already in 1787, sound can be visualised by bowing a surface lightly covered with sand. So-called Chladni patterns are produced in this way. In her piece Touche Nature (2017) I-lly Cheng creates a phenomenon similar to Chladni patterns by placing transparent bowls filled with water on loudspeakers. The sound waves are visualised as water waves:

A bowl filled with water is placed upon a big loudspeaker in I-lly Cheng's piece Touche Nature
A bowl filled with water is placed upon a big loudspeaker in I-lly Cheng’s piece Touche Nature. © I-lly Cheng

A contact microphone is attached to the bowl and amplifies the bowl itself and the water movements in the bowl. Four percussionists each play a bowl filled with 1000 ml of water. During the performance the percussionists produce sounds by moving the water with their hands, rubbing the bowl, throwing stones in the bowl or pouring more water in the bowls. These sounds are all picked up by the contact microphones and then amplified  through the PA system. The water sound itself is also picked up by four condenser microphones and amplified directly through the loudspeakers in the hall.

The first page of the score of Touche Nature by I-lly Cheng.
The first page of the score of Touche Nature by I-lly Cheng (for the attentive reader: in the original version 500 ml water was used, but this was corrected to 1000 ml). © I-lly Cheng

As the first page of the score shows, the sound is processed with a pitch shift effect in the computer and there is also some feedback used. The feedback is created by sending the signal of the contact microphones back to the four loudspeakers underneath the bowls. There is no direct feedback happening though, but a pair of two loudspeakers and two microphones is together producing one big feedback loop.  The sound picked up by the contact microphone of player 1 is sent to the loudspeaker of player 3, which is then picked up by the contact microphone of player 3, creating a feedback loop by sending it to the loudspeaker of player 1. The same feedback is created between player 2 and 4.

An overview of the loudspeakers and contact microphones used in Touche Nature. The four condenser microphones used for direct amplification of the water sounds are not on the picture.
An overview of the loudspeakers and contact microphones used in Touche Nature. The four condenser microphones used for direct amplification of the water sounds are not on this picture. © I-lly Cheng

You can hear different kind of effects, including some feedback, at the very beginning of the piece, performed here by We Spoke:

During the piece I-lly explores the sonic world between natural water sounds and more abstract percussive rhythms. At the end of this fragment some pre-produced sounds are played through the loudspeakers, creating big movements in the water. These movements can not only be seen but the water sound caused by these movements is amplified through the condenser microphones. The loudspeakers seem to become liquid themselves:

Small Movements by Adam Basanta

Adam Basanta performs Small Movements.
Adam Basanta performs Small Movements. The performance starts with acoustic feedback by holding a very small loudspeaker close to a microphone. Video still. © Adam Basanta

In his set-up for Small Movements (2016) Adam Basanta uses two microphones and seven loudspeakers in different combinations to create acoustic feedback. The sound of the feedback is surprisingly “clean”: it contains not much noise, but focuses essentially on a single pitch. This is no coincidence, because besides the seemingly chaotic set-up of all kinds of glass jars, wires and cassette players he uses the music software Max  to control the resulting sound precisely. There is a constant interaction between the physical sound creation with the objects on the table and the virtual sound control in the computer.

Set up for Small Movements by Adam Basanta
Set up for Small Movements by Adam Basanta. The grey circles are the seven loudspeakers. The two other microphones on the pictures and video are used for general amplification of the sound through the PA system. © Adam Basanta

Let’s first have a look (and listen) at how Adam uses the objects on the table to influence the sound. As mentioned before, acoustic feedback is an important element and an example of this can already be heard at the very beginning of the documentation video (you find the video at the end of this post). Physical interaction is done also by putting a stick on a loudspeaker membrane (see 15’44” in the video). On a later occasion Adam uses a metal wire (16’40” in the video). Due to low frequency sine waves sent from the computer to the loudspeaker (more on this in the part on the computer software used), the membrane will move back and forward and the stick or wire jumps on the membrane, causing a quick rhythm. The jars are used as what could be called a physical filter. By placing them on or close to a loudspeaker, the sonic outcome is influenced by the resonance frequencies of the jar (see 14’15” in the video). By holding a jar close to a microphone, the microphone picks up the resonance frequency of the jar and the pitch of the feedback will change (see 20’30” in the video).

Adam Basanta uses a jar for preparing a loudspeaker.
Adam Basanta places a big jar above a loudspeaker to change the feedback frequency. Video still. © Adam Basanta

This physical sound creation is now enhanced by the use of a computer software. A patch created in the music software Max manipulates the signals coming from the microphones before they enter the loudspeakers. I asked Adam what kind of sound processing is going on and he let me know that “Of course, there is some serious limiting on each channel, calibrated to each speaker’s capacity in order to avoid burning them out. But the main processing occurs through two algorithms, which regulate the feedback frequency and amplitude. For frequency, I use various filtering techniques, […] which only allow feedback to occur at specific frequencies. Filtering can allow very precise control of the frequencies, and also allow me to create feedback in ways which are very unfamiliar to us: for instance, very low frequency feedback, or a tonal triad using feedback.” The processing is thus not only keeping the feedback within reasonable loudness and avoiding damage to the loudspeakers. With the help of a Max patch, the feedback frequencies are fixed quite precisely: 14 different pitches can be played by using the 14 possibilities of feedback between the two microphones and seven loudspeakers. And with use of a foot pedal Adam can switch to another preset in the Max patch, giving him a new row of 14 different pitches.

Score Adam Basanta Small Movements
Adam Basanta uses his set-up for Small Movements also for other projects, such as a piece with bass saxophone player Jason Sharp. The score illustrates how accurately the set-up can be played. (The cup of coffee is just part of the developing process…) © Adam Basanta

In Small Movements different kinds of technologies are used in undogmatic ways. Although you might have the impression, that you see all sound processing happening, much is done by help of virtual sound processing in the computer. Besides the heavy filtering of the feedback sound, the low sine waves mentioned earlier are  another example of sonic material generated by the computer. By using these low frequency movements of the loudspeaker membrane to “play” a stick or metal wire Adam connects the computer software to the physical sound production.

Two cassette players belong also to the set-up on the table, playing back the material just produced by the performer. In Adam’s words: “The cassette looping is kind of a layer on top. The cassette players themselves are quite old, and so I use them as a way to echo or repeat previously occurring material, but in a way that is quite degraded. They are mostly used as faded memory of material which was crystal clear at the time at which it was played.”

Sound in a Jar by Ronald Boersen

speaker jar microphones
Different microphones are used to pick up the sound from the small loudspeaker in the jar. © Ronald Boersen

In Sound in a Jar (2016) by Ronald Boersen three performers— Ronald Boersen himself, Dganit Elyakim and Hadas Pe’ery—move three different microphones back and forwards to a very small loudspeaker placed in a jar. As Ronald explained me, this piece is a sound environment, which changes and developes algorithmically during the performance. The main task for the performers during the rehearsals is to explore this environment and find ways to engage musically with the sounds they can produce. The performers pick up the sounds of the loudspeaker in the small jar and it is sent back to the loudspeaker again, passing through a patch in the music software Max. By placing the loudspeaker in a jar, the sound will resonate easier, a very suitable feature for acoustic feedback. The main sound of the performance is thus acoustic feedback, coloured by the different characteristics of the three microphones used (two different condenser and a dynamic microphone).

microphones loudspeakers max msp
This scheme gives an overview of the inputs and outputs of the piece, as well as the three forms of live processing used, in form of a Max patch. © Ronald Boersen

The Max patch processes this feedback sound: as the scheme depicts, Ronald uses threshold triggered reverb pulses, feedback interval driven harmonisation and granular delay lines. By using amplitude thresholds and feedback frequencies these processes are directly influenced by the feedback sound itself, and the feedback itself is processed by the Max patch. In this manner Sound in a Jar uses a double form of feedback: acoustic feedback (using the sound itself) and data feedback (by using data streams generated from amplitude and frequency analyses of the loudspeaker sound, without using the sound itself), and both are effecting each other constantly. How much the sound of each microphone is processed by Max and which of the three processes is used (reverb pulses, harmonisation or granular delay) is changing during the piece, as is depicted in the diagram in the score. The relationships between microphone, processing and loudspeaker change not only accordingly to the distance between microphone and loudspeaker but also because of the temporal development of the kind of sound processing in the Max patch.

In this close-up video the development in sound processing and the direct relationship between the movements of the microphones and the resulting sound can easily be followed:

A very appealing aspect of this set-up is in my view, is that all three microphone signals are connected to a single loudspeaker. All three players have to find their own way of playing, because they have a different type of microphone and their sound is processed in a different way, but at the same time all these different paths come together again in a small loudspeaker in a jar. In the second part of the performance the sound of the small loudspeaker is slowly also diffused through the bigger loudspeakers in the hall (the PA loudspeakers). This does not cause any noticeable change in the acoustic feedback interaction, but the spatial and spectral characteristics do change due to the different in placement, sound diffusion and spectral response of these loudspeakers. The sound of the jar itself seems to fill the whole performance space now, instead of occupying a single spot. At the end of the piece, the loudspeakers in the hall fade out again and the sound moves back into the jar.

By preparing this text I also discovered that Ronald Boersen has an interactive sound installation, that uses loudspeakers and ping pong balls. I added this to the collection of fifty years of loudspeakers and ping pong balls.

And here a recording of the whole piece: