Klangflug by Lara Stanic

Lara Stanic Klangflug flying loudspeakers
Lara Stanic performs Klangflug. © Lara Stanic

In her performance Klangflug (2006 – 2013, several versions) Lara Stanic looks for ways to transmit the airiness and volatility of sound itself to the heavy loudspeakers, needed to produce sounds. By simulating sounds of an airplane taking off on her flute, she sets the loudspeakers free and they start to fly.

This is done by attaching four big helium balloons to four loudspeakers. Lara puts sugar on top of the loudspeakers to keep them on the floor. She starts to play glissandi on her flute now, simulating airplane departure noises. These glissandi are picked up by a microphone and sent to a computer software (a Max-patch), using pitch shifter to  transpose and enlarge the glissandi.  These sounds are diffused through the four loudspeakers with sugar on top. As can be seen in this short demonstration movie, at certain frequencies, especially low ones, the movements of the loudspeaker membrane cause the sugar to fall off. The helium balloon will now ascend into the air, taking the loudspeaker with it:

During the performance the pitch shifters prolong Lara’s glissandi on the flute more and more, enlarging the possible glissando range of the flute. Lara explained to me, that the balance of the weight of the sugar piles, big enough helium balloons and right pitches on the flute is very delicate. The amount of time it takes to free each loudspeaker is variable for each performance, and the height of their flight is depending on how much sugar is left on the loudspeaker. When I attended this performance, exactly this unpredictability was so fascinating: the big balloons and the rising pitches built up the tension, whereas the final taking off of a loudspeaker always came as a surprise.

The movement of the loudspeakers is only visually perceivable in the movie documenting the performance. Evidently, when hearing this performance live, an important aspect is also the upwards movement of the sound. (And if you are curious why sugar is used: I asked Lara and she told me it was just a result of trial and error with different kinds of sand, sugar and other material.)

Lara has created many works for microphones and loudspeakers, another example is Open Air Bach. Other artists have focused not so much on the taking off, but especially on the flight itself of loudspeakers. Works by Lucio Capece, Fabrice Moinet and Genoel Lilienstern are interesting examples (and I will write about these works in the future ).

An active loudspeaker by Hermann Scherchen

The rotating loudspeaker ball with 32 loudspeakers developed by Hermann Scherchen (source http://www.studiodabbeni.ch/exhibitions/20/hermann-scherchen:-alles-hörbar-machen-i).

Due to his intensive occupation with recording and reproduction of music the conductor Hermann Scherchen (1891-1966)  became aware of the enormous increment of people listening to music through loudspeakers. He was concerned about the difference between the complex sound diffusion during a concert by the whole orchestra and the very poor representation of the music through one loudspeaker (at that time sound diffusion was often still mono). Scherchen aimed for a recording to sound as if performed in the (acoustic) space, in which it was reproduced and in which the listener of the recording was present. To achieve this, loudspeakers should diffuse sound in such a way, that they “trigger” the acoustics of the space. The recording is not anymore a reproduction of a musical event, which had happened in another space and another time, but the recording now becomes a musical event in itself, sounding as if the orchestra plays in your living room.

To achieve this effect, Scherchen invented a rotating loudspeaker ball, or, as it was called by him, „Der aktive Lautsprecher“ (the active loudspeaker). Scherchen looked for an alternative for stereophonic reproduction, which in his opinion could not reproduce the sound perception in a space. The rotating loudspeaker ball was developed to distribute the sound in such a way, that each member of the public would sit inside the „sweet spot“ or actually no sweet spot was existing anymore. This loudspeaker was developed in 1959 and consisted of 32 speakers (215 mm diameter) placed on a 70 cm ball. The weight of the whole construction was 150 kilogram. This ball was placed on a stand and able to rotate in all directions. The music played on this loudspeaker ball was not experimental at all, but for example J.S.Bach’s St. Matthew Passion. (I would love to experiment with these loudspeakers though!)

I only have a very bad picture but apparently listening to this loudspeaker was also done outside (in Gravesano, Switzerland, where Scherchen lived). In the second picture you can see the loudspeaker ball in the middle and the audience sitting around:

A beautiful documentation of an exhibition on Herrmann Scherchen’s electroacoustic research has been made by Luca Frei. Bruno Spoerri wrote a detailed history on Scherahen’s studio in Gravesend (see the article Hermann Scherchen und das Experimentalstudio Gravesano (1954–1966) in the book Musik aus dem nichts).

In this video the loudspeaker ball can be seen in rotation (the music heard in the video seems not to be diffused by the loudspeaker ball though):


More information on this loudspeaker ball can be found in the archive of the Akademie der Künste Berlin and in several volumes of the Gravesaner Blätter:

“Fünf Jahre Gravesano“ (1954 – 1959) in: Gravesaner Blätter No. XIV Volume IV 1959 p. 2.

Technical aspects at the Fifth Anniversary of Gravesano, F. A. Loescher, Gravesaner Blätter No. XV/XVI Vol. IV 1960, p. 6 – 7

Annea Lockwood’s loudspeaker ball  also diffuses monophonic sound through many loudspeakers.