112 loud-speaking telephone receivers and other early sound reinforcement systems by Ralf Ehlert

early sound reinforcement system
An early example of a sound reinforcement system: 112 loud-speaking telephone horns in New York (picture source)

The picture above was made in 1919 during the Victory Liberty Loan and the lamp-like objects hanging above the crowd are so-called loud-speaking telephone receivers. The crowd had “the unusual sensation of having spoken messages come to them out of the air” (source: Electrical Review, May 31, 1919). These 112 loud-speaking telephone receivers with large horns—in other words loudspeakers—were amplifying the speeches and making them audible for apparently a crowd of 10.000 people (my experience with numbers in these kinds of descriptions is that they might be exaggerated, but on the pictures the crowd seems at least large).

loudspeaking telephone loudspeaker 1919
One of the loud-speaking telephone receivers used in what was called then a “Public Address Telephone System” (picture source).

This early use of outside sound amplification through loudspeakers is mentioned on the website www.medienstimmen.de. This site is focusing on early sound reinforcement systems and initiated by Ralf Gerhard Ehlert. It was a vary valuable resource for obtaining information during my research on early microphone and loudspeaker technology. For that reason I would like to dedicate a post to this website, since it might be helpful and inspiring for others too. Ralf developed this website as a part of a research project on the use of sound reinforcement systems for crowds during the first half of the twentieth century. A special focus was on the use of microphones and loudspeakers during by the National Sozialism (1933-1945), since the development of early sound reinforcement systems for crowds unfortunately is strongly related to this. Most of the articles are in German, but many links point to english sources and I think the lists are also very well understandable without any German knowledge.

The website provides resources, such as lists with microphone, amplifier and loudspeaker patents till 1950, a chronology of the use of sound reinforcement system during events and an extensive bibliography. There are many different loudspeakers to discover on the website, such as all kinds of horn loudspeakers:

Horn loudspeaker 1925
A Telefunken Lautsprecher (1925) for the Vox-Maschinen A.G. in Berlin combined headphones with a horn (picture source).
schallwand loudspeaker wall
The Schallwand (loudspeaker wall) invented by Peter Grassmann in 1936 (picture source).

Other inventions discussed by Ralf Ehlert are for example the transportable  Schallwand (sound wall) of 1936 by Peter Grassmann and the different Pilzlautsprecher (mushroom loudspeakers) which diffuse their sounds in many directions. These Pilzlautsprecher were very useful in sound reinforcement systems for very large crowds. By using many of these Pilzlautsprecher placed at regular distances a large crowd could hear the amplified sound without any of the echo problems a system with directional loudspeakers has. Some examples of these problems:

The sound is heard three times by the listener H on the left picture. The right way to position the loudspeaker is depicted on the right (picture source).
Doubling effect by two loudspeaker
Also in this loudspeaker set-up the sound is heard three times by the listener H on the left picture. The right way to place the loudspeakers is depicted on the right (picture source).
The use of so-called Pilzlautsprecher solves the problems caused by mono-directional loudspeakers (picture source).

I asked Ralf if he had a favourite among all those different patents listed on his site. He told me that he finds the Improvement in Magneto-Electric Apparatus by Ernst W. Siemens (US 149797 April 14 1974) very special, since it is describing already the modern electrodynamic loudspeaker, which is then “reinvented” again during the 1920s.

When reading the patent lists my eye felt on a patent of December 20, 1924, filed 9 days after the famous Rice and Kellogg patent (DRP 631724). Remarkably this patent (CH 113262) for a radiophonischer Lautsprecher (radiophonic loudspeaker) has been filed by a woman, not surprisingly the only one on this list. The invention itself is not very spectacular; it is a kind of double  moving iron loudspeaker, using two metal membranes. This system would become obsolete as soon as the electrodynamic system as described in the Rice and Kellog patent mentioned above was established as the common way to build loudspeakers. During my research for the book I did not have time to investigate any further, but during the last few days I tried to find out who Maria Schlatter Schrag was. My search has not yet ended, and it will probably take some more time to find out why this patent was filed by a woman. I am afraid though the reason might be much more mundane than I was hoping for. As far as I know now, she has been a servant and a cook, and not the polytechnical university student I was hoping for (Zurich university was open for women already from the 1860s onwards). Her husband Rudolf Schlatter was a radio technician though, and it might be him who invented the loudspeaker, and she just filed it for some practical reason.

Maria Schlatter Schrag radiophonischer lautsprecher loudspeaker 1924
The patent for a radiophonischer Lautsprecher by Maria Schlatter Schrag, 1924.

Loudspeakeroperas by Huba de Graaff

Huba de Graaff's opera Lautsprecher Arnolt
Several of the loudspeaker sculptures used in Huba de Graaff’s opera Lautsprecher Arnolt. © Huba de Graaff

In her opera Lautsprecher Arnolt (2004) Huba de Graaff decided to have most roles played by loudspeakers. Only the main character—the writer Arnolt Bronnen (1895-1959)—is played by a human actor, Marien Jongewaard. Arnolt himself is literally a  “loud speaker”, screaming and provoking the kinetic loudspeaker sculptures. Arnolt often changes his policitical orientation, depending of what seemed to be the most advantageous at that time, similar to how loudspeakers can reproduce all kinds of sounds and do not have to choose one direction. The loudspeaker sculptures in their turn are all humanised. They are constructed by Bart Visser and can often move and play the characters of, for example, Bertolt Brecht (a very long thin and vibrating loudspeaker), Joseph Goebbels (a long column of loudspeakers, which can grow higher and shorter)  and Arnolt Bronnen’s wife Olga Förster-Prowe (two loudspeakers in the form of a bra). The piece is set during the first half of the twentieth century. During that time the loudspeaker was developed and became suitable for mass communication and soon after used in Nazi Germany for dissemination of their propaganda.

Marien Jongewaard next to the column loudspeaker Joseph Goebbels, in its shortest form.
Marien Jongewaard next to the loudspeaker column Joseph Goebbels, in its shortest form. © Huba de Graaff
Speaker opera Goebbels
The loudspeaker column Joseph Goebbels can increase in length (compare it’s length with the picture above). © Huba de Graaff

As Huba explains in her text about loudspeakers and sound systems, she considers the loudspeaker as the real instrument of electronic music. For this reason it is essential for her that loudspeakers become moving objects on stage. In this way a physical connection between sound and movement is created and the speakers become a sound source which is moving when it is sounding (similar to instrumentalists playing their instrument). A typical example of such moving loudspeakers are the so-called AATs, an abbreviation of Addressable Audio Transducers. These are rotating loudspeakers derived from Leslie loudspeaker cabinets produced by Yamaha. Huba transformed them in such a way that their movements are controllable by MIDI. Here they speak in German on loudspeakers as instruments:

Except the often historic voice recordings and some texts by the director of the piece Erik-Ward Geerlings,  most of the sounds diffused through the loudspeakers are sounds which can not exist without loudspeakers: sine waves, all kinds of other synthesised sounds, hammond organ, electric guitar, but also the characteristic mostly unwished hum of sound amplification systems and of course acoustic feedback.

Huba de Graaff composed several other works with loudspeakers, one of them is the opera Hephaistos (1997), for 40 loudspeakers, robotspeakers, computercontrolled moving loudspeakers, three singers and computers. Also in this opera the loudspeakers are part of the scenery, as for example the singers are wearing loudspeaker heads.

loudspeaker hats Huba de Graaff
The two actresses in Huba de Graaff’s opera Hephaistos are wearing loudspeaker hats. © Huba de Graaff.

An earlier piece is Corenicken (1990). Although not called opera, this is again a large scale work, using many different sound sources and performed by Huba on violin and a percussion player. The audience is surrounded by all kinds of loudspeakers and also visual media such as small televisions. Huba herself wears her “Japon Fuzz”, a tin dress containing electronic equipment, so it can create “fuzzy” and feedback sounds in response to her movements. The piezo disks attached to the dress (see the second picture of the dress) pick up the sound of the dress. As soon as Huba approaches a loudspeaker, her amplified tin dress feedbacks with the loudspeaker:

Huba de Graaff loudspeaker dress
The “japon fuzz”, a tin dress with electronic equipment to create “fuzzy” and feedback sounds. © Huba de Graaff
dress with speakers
A close up of the Japon Fuzz, using piezo disks to pick up sound. © Huba de Graaff

There are also two rotating loudspeakers (similar to the AATs mentioned above) on stage and an enormous amount of piezo ceramic elements is hanging above the audience. Together they form three grids, containing each 256 piezo disks (a total of 768!). Huba developed a computer software to control pulse-trains send to these disks, resulting in moving soundscapes. Every piezo disk is prepared with a piece of thick aluminium foil, so it diffuses its sound louder. Wonderful clouds of small sounds are moving above the audience:

Huba de Graaff Piezo grids 768 piezo ceramic elements
Setting up for Huba de Graaff’s Corenicken: the audience is placed around the stage. Three grids containing 768 piezo disks prepared with aluminium foil are hanging above the audience. © Huba de Graaff

Huba considers stereophonic sound as used in hifi-systems for the living room or in concert hall amplification as a strange and flat reproduction of reality. Sound loses its depth and perspective when reproduced by such systems. A common P.A. system (a public address system used for sound amplification in all kinds of situations, such as concert halls, theatres, and stadiums) creates a distance between the audience and the creators. In works such as Corenicken Huba is looking for a what she calls an I.A. system (individual address), as opposed to the common P.A. system. Every audience member is surrounded in a different way by loudspeakers. And indeed each of her imaginative loudspeaker sculptures diffuses its sound in an individual way.

Huba is currently working on a new piece for the AAT loudspeakers, which will be premiered soon. I’ll keep you posted.

Speaker Dress by Pauchi Sasaki

speaker dress Pauchi Sasaki
Pauchi Sasaki wears her Speaker Dress (2014), containing 96 loudspeakers. Photo by Juan Pablo Aragon. © Pauchi Sasaki

Our clothes can be seen as a form of communication between ourselves and the outside world. They give a visual impression of who we are and how we would like to be seen by others. Pauchi Sasaki designs dresses which are not only visible, but transmit sonic xterial as well. These dresses consists of around 100 loudspeakers, and are able to process sound live.

Pauchi got the idea for developing sonic costumes, when she performed in a temple in Lima. As she remembers: “But of course, it’s an ancient temple, so there was no electricity or outlets; I could perform only acoustic sounds, even though that’s not what I had planned. That’s when I got the idea of a self-contained system, but one that could be integrated into my body, that was the idea” (interview by Michael Barron).

The result was developed in 2014 and is simply called Speaker Dress. It is a self designed wearable sound sculpture. Two dresses exist nowadays, a black and a white one. The black one contains 96 loudspeakers, the white one even 125. Several loudspeakers are connected to the same amplifier channel. The black dress for example contains six channels of amplification, resulting in 16 loudspeakers per channel, and in six different sonic zones on the dress (a zone is formed by the loudspeakers diffusing the same sound).

Pauchi Sasaki Speaker Dress
Pauchi Sasaki in performance with her Speaker Dress. Photo by Janice Smith-Palliser. © Pauchi Sasaki

The performer can choose from different input possibilities: a contact microphone, a lavalier microphone and an mp3 player are connected. These signals are sent wireless to a computer, which processes the sound in the music software Max. The sound is sent back to the dress again and is diffused by the loudspeakers.

This is a short video made during a sound check for the Ojai Music Festival made by sound engineer Nick Tipp. Pauchi is testing the dress and walks through the auditorium:

All kind of live sounds made by the performers can be processed live during the concert and the transformed version is sounding through the dresses. Flutist Claire Chase and Pauchi herself, who is a violinist as well, use their breath, their voices and their instruments in the first composition Pauchi composed for  two dresses: Gama XV (2016). The performers are dressed in their own sounds, transformed by live electronics:

Transducer by Robin Fox and Eugene Ughetti

microphone swinging loudspeakers
Eugene Ughetti swings a axicrophone above his head, whilst three other Speak Percussion members are holding loudspeakers. Video still © Robin Fox & Eugene Ughetti

In Transducer (2013) you might easily recognise all kinds of “classical” playing techniques for microphones and loudspeakers, twisted in surprising and clever ways. This results in a performance which reinvents and expands known pieces such as Steve Reich’s Pendulum Music, Karlheinz Stockhausen’s Mikrophonie I or Gordon Monahan’s Speaker Swinging into unexplored territories. Robin Fox and Eugene Ughetti composed this piece for Speak Percussion (Eugene Ughetti, Matthias Schack-Arnott and Leah Scholes, and guest percussionist Louise Devenish are on stage).

As the title Transducer already implies, this piece is focusing on so-called  transducers: devices that transform one form of energy to another, a category microphones and loudspeakers belong to. The piece starts with a scene which reminds me of the swinging loudspeakers in Gordon Monahan’s Speaker SwingingBut this time a microphone circulates above Eugene’s head, and is, for example, picking up sounds diffused by loudspeakers carried around by  other performers:

One of the main elements on stage is an array of eight microphones hanging above eight small loudspeakers, which remembers us of Steve Reich’s Pendulum Music. Although clearly inspired from the swinging microphones used by Steve Reich, this pendulum-array—containing more and smaller pendulumsis played in a different way, or more accurately: in many different ways. Reich’s Pendulum Music is process-based and acoustic feedback is its sole sound. After releasing the microphones the performers do not interfere anymore with the swinging microphones. The performance is finished as soon as the microphones are hanging stationary above the loudspeakers.

Pendulum Music, Transducer
Eight pendulums of microphones and loudspeakers are played in many different ways during Transducer. Video still © Robin Fox & Eugene Ughetti

In Transducer Robin and Eugene develop an instrumental set-up with the pendulums, which produce many different sounds such as clicks, sine waves or noise. These different type of sounds are generated with the help of patches programmed in the music software Max. The pendulums in Transducer also do not feedback acoustically, but the swinging microphones amplify the sound coming from the loudspeakers underneath them in pulses: the closer the microphone moves to the loudspeaker the louder the sound gets. The signals of the microphones can be amplified through eight bigger loudspeakers placed around the audience.

audience PA
Eight loudspeakers and two subwoofers are placed around the audience during Transducer. (Many other loudspeakers and microphones are placed on stage, see the schedule below for their placement). © Robin Fox & Eugene Ughetti
circuit overview Transducer
This is an overview of all equipment involved during Transducer. (Only the  eight channel loudspeakers placed around the audience are not on this scheme). © Robin Fox & Eugene Ughetti

The whole set-up for Transducer contains many different kinds of microphones and loudspeakers, and therefore a huge amount of possibilities for combining these. Besides the elements mentioned earlier, there are four different tables, all focusing on a specific topic of playing microphones and loudspeakers. On the Textured Table different surfaces are triggering a contact microphone to obtain musical material and have it feeding back through other loudspeakers and microphones. On the Speaker Table a loudspeaker is placed, which membrane moves other objects (including some ping pong balls!), and in fact is acting as a percussionist. The third table is the so-called Mic on Mic table, on which a microphone is amplifying another microphone, which itself is not amplified. The Electromagnetic Table creates sounds with the use of an induction coil and a pulled-open computer.

contact microphone surface
The Textured Table: using  a contact microphone for amplifying several kinds of surfaces. Video still © Robin Fox & Eugene Ughetti
two microphones amplification
The Mic on Mic Table: a microphone is amplifying another microphone, which itself is not amplified. Video still © Robin Fox & Eugene Ughetti

The piece ends with acoustic feedback: Eugene Ughetti approaches two loudspeakers with a microphone. In between them a big tam-tam is placed and starts to resonate according to the frequencies diffused by the loudspeakers placed right behind it. The acoustic feedback is coloured by the resonances of the tam-tam and by moving the microphone close to the tam-tam changes in resonances can be picked up. This might remind you of another well-known composition for microphones as musical instruments. And indeed, the second part of this Speak Percussion concert continues with Mikrophonie I by Karlheinz Stockhausen.

acoustic feedback tam-tam
In this acoustic feedback set-up a tam-tam is placed between microphone and loudspeakers. Video still © Robin Fox & Eugene Ughetti

The whole documentation video of Transducer can be viewed here: